quanyawei
2024-11-15 f752f50a484f63fc3786ab1c7ad563f3b17cce77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// Extend the Array class
Array.prototype.max = function() {
  return Math.max.apply(null, this)
}
Array.prototype.min = function() {
  return Math.min.apply(null, this)
}
Array.prototype.mean = function() {
  var i, sum
  for (i = 0, sum = 0; i < this.length; i++) { sum += this[i] }
  return sum / this.length
}
Array.prototype.pip = function(x, y) {
  var i; var j; var c = false
  for (i = 0, j = this.length - 1; i < this.length; j = i++) {
    if (((this[i][1] > y) != (this[j][1] > y)) &&
        (x < (this[j][0] - this[i][0]) * (y - this[i][1]) / (this[j][1] - this[i][1]) + this[i][0])) {
        c = !c
    }
  }
  return c
}
 
var kriging = (function() {
  var kriging = {}
 
  function createArrayWithValues(value, n) {
    var array = []
    for (var i = 0; i < n; i++) {
      array.push(value)
    }
    return array
  }
 
  // Matrix algebra
  function kriging_matrix_diag(c, n) {
    var Z = createArrayWithValues(0, n * n)
    for (let i = 0; i < n; i++) Z[i * n + i] = c
    return Z
  }
  function kriging_matrix_transpose(X, n, m) {
    var i; var j; var Z = Array(m * n)
    for (i = 0; i < n; i++) {
      for (j = 0; j < m; j++) { Z[j * n + i] = X[i * m + j] }
    }
    return Z
  }
  function kriging_matrix_scale(X, c, n, m) {
    var i, j
    for (i = 0; i < n; i++) {
      for (j = 0; j < m; j++) { X[i * m + j] *= c }
    }
  }
  function kriging_matrix_add(X, Y, n, m) {
    var i; var j; var Z = Array(n * m)
    for (i = 0; i < n; i++) {
      for (j = 0; j < m; j++) { Z[i * m + j] = X[i * m + j] + Y[i * m + j] }
    }
    return Z
  }
  // Naive matrix multiplication
  function kriging_matrix_multiply(X, Y, n, m, p) {
    var i; var j; var k; var Z = Array(n * p)
    for (i = 0; i < n; i++) {
        for (j = 0; j < p; j++) {
        Z[i * p + j] = 0
        for (k = 0; k < m; k++) { Z[i * p + j] += X[i * m + k] * Y[k * p + j] }
        }
    }
    return Z
  }
  // Cholesky decomposition
  function kriging_matrix_chol(X, n) {
    var i; var j; var k; var sum; var p = Array(n)
    for (i = 0; i < n; i++) p[i] = X[i * n + i]
    for (i = 0; i < n; i++) {
        for (j = 0; j < i; j++) { p[i] -= X[i * n + j] * X[i * n + j] }
        if (p[i] <= 0) return false
        p[i] = Math.sqrt(p[i])
        for (j = i + 1; j < n; j++) {
        for (k = 0; k < i; k++) { X[j * n + i] -= X[j * n + k] * X[i * n + k] }
        X[j * n + i] /= p[i]
        }
    }
    for (i = 0; i < n; i++) X[i * n + i] = p[i]
    return true
  }
  // Inversion of cholesky decomposition
  function kriging_matrix_chol2inv(X, n) {
    var i, j, k, sum
    for (i = 0; i < n; i++) {
        X[i * n + i] = 1 / X[i * n + i]
        for (j = i + 1; j < n; j++) {
        sum = 0
        for (k = i; k < j; k++) { sum -= X[j * n + k] * X[k * n + i] }
        X[j * n + i] = sum / X[j * n + j]
        }
    }
    for (i = 0; i < n; i++) {
      for (j = i + 1; j < n; j++) { X[i * n + j] = 0 }
    }
    for (i = 0; i < n; i++) {
        X[i * n + i] *= X[i * n + i]
        for (k = i + 1; k < n; k++) { X[i * n + i] += X[k * n + i] * X[k * n + i] }
        for (j = i + 1; j < n; j++) { for (k = j; k < n; k++) { X[i * n + j] += X[k * n + i] * X[k * n + j] } }
    }
    for (i = 0; i < n; i++) {
      for (j = 0; j < i; j++) { X[i * n + j] = X[j * n + i] }
    }
  }
  // Inversion via gauss-jordan elimination
  function kriging_matrix_solve(X, n) {
    var m = n
    var b = Array(n * n)
    var indxc = Array(n)
    var indxr = Array(n)
    var ipiv = Array(n)
    var i, icol, irow, j, k, l, ll
    var big, dum, pivinv, temp
 
    for (i = 0; i < n; i++) {
      for (j = 0; j < n; j++) {
        if (i == j) b[i * n + j] = 1
        else b[i * n + j] = 0
        }
    }
    for (j = 0; j < n; j++) ipiv[j] = 0
    for (i = 0; i < n; i++) {
        big = 0
        for (j = 0; j < n; j++) {
        if (ipiv[j] != 1) {
            for (k = 0; k < n; k++) {
            if (ipiv[k] == 0) {
                if (Math.abs(X[j * n + k]) >= big) {
                big = Math.abs(X[j * n + k])
                irow = j
                icol = k
                }
            }
            }
        }
        }
        ++(ipiv[icol])
 
        if (irow != icol) {
        for (l = 0; l < n; l++) {
            temp = X[irow * n + l]
            X[irow * n + l] = X[icol * n + l]
            X[icol * n + l] = temp
        }
        for (l = 0; l < m; l++) {
            temp = b[irow * n + l]
            b[irow * n + l] = b[icol * n + l]
            b[icol * n + l] = temp
        }
        }
        indxr[i] = irow
        indxc[i] = icol
 
        if (X[icol * n + icol] == 0) return false // Singular
 
        pivinv = 1 / X[icol * n + icol]
        X[icol * n + icol] = 1
        for (l = 0; l < n; l++) X[icol * n + l] *= pivinv
        for (l = 0; l < m; l++) b[icol * n + l] *= pivinv
 
        for (ll = 0; ll < n; ll++) {
        if (ll != icol) {
            dum = X[ll * n + icol]
            X[ll * n + icol] = 0
            for (l = 0; l < n; l++) X[ll * n + l] -= X[icol * n + l] * dum
            for (l = 0; l < m; l++) b[ll * n + l] -= b[icol * n + l] * dum
        }
        }
    }
    for (l = (n - 1); l >= 0; l--) {
      if (indxr[l] != indxc[l]) {
        for (k = 0; k < n; k++) {
            temp = X[k * n + indxr[l]]
            X[k * n + indxr[l]] = X[k * n + indxc[l]]
            X[k * n + indxc[l]] = temp
        }
        }
    }
 
    return true
  }
 
  // Variogram models
  function kriging_variogram_gaussian(h, nugget, range, sill, A) {
    return nugget + ((sill - nugget) / range) *
    (1.0 - Math.exp(-(1.0 / A) * Math.pow(h / range, 2)))
  }
  function kriging_variogram_exponential(h, nugget, range, sill, A) {
    return nugget + ((sill - nugget) / range) *
    (1.0 - Math.exp(-(1.0 / A) * (h / range)))
  }
  function kriging_variogram_spherical(h, nugget, range, sill, A) {
    if (h > range) return nugget + (sill - nugget) / range
    return nugget + ((sill - nugget) / range) *
    (1.5 * (h / range) - 0.5 * Math.pow(h / range, 3))
  }
 
  // Train using gaussian processes with bayesian priors
  kriging.train = function(t, x, y, model, sigma2, alpha) {
    var variogram = {
        t: t,
        x: x,
        y: y,
        nugget: 0.0,
        range: 0.0,
        sill: 0.0,
        A: 1 / 3,
        n: 0
    }
    switch (model) {
      case 'gaussian':
        variogram.model = kriging_variogram_gaussian
        break
      case 'exponential':
        variogram.model = kriging_variogram_exponential
        break
      case 'spherical':
        variogram.model = kriging_variogram_spherical
        break
    }
 
    // Lag distance/semivariance
    var i; var j; var k; var l; var n = t.length
    var distance = Array((n * n - n) / 2)
    for (i = 0, k = 0; i < n; i++) {
      for (j = 0; j < i; j++, k++) {
        distance[k] = Array(2)
        distance[k][0] = Math.pow(
            Math.pow(x[i] - x[j], 2) +
            Math.pow(y[i] - y[j], 2), 0.5)
        distance[k][1] = Math.abs(t[i] - t[j])
        }
    }
    distance.sort(function(a, b) { return a[0] - b[0] })
    variogram.range = distance[(n * n - n) / 2 - 1][0]
 
    // Bin lag distance
    var lags = ((n * n - n) / 2) > 30 ? 30 : (n * n - n) / 2
    var tolerance = variogram.range / lags
    var lag = createArrayWithValues(0, lags)
    var semi = createArrayWithValues(0, lags)
    if (lags < 30) {
        for (l = 0; l < lags; l++) {
        lag[l] = distance[l][0]
        semi[l] = distance[l][1]
        }
    } else {
        for (i = 0, j = 0, k = 0, l = 0; i < lags && j < ((n * n - n) / 2); i++, k = 0) {
        while (distance[j][0] <= ((i + 1) * tolerance)) {
            lag[l] += distance[j][0]
            semi[l] += distance[j][1]
            j++; k++
            if (j >= ((n * n - n) / 2)) break
        }
        if (k > 0) {
            lag[l] /= k
            semi[l] /= k
            l++
        }
        }
        if (l < 2) return variogram // Error: Not enough points
    }
 
    // Feature transformation
    n = l
    variogram.range = lag[n - 1] - lag[0]
     var X = createArrayWithValues(1, 2 * n)
    var Y = Array(n)
    var A = variogram.A
    for (i = 0; i < n; i++) {
        switch (model) {
        case 'gaussian':
          X[i * 2 + 1] = 1.0 - Math.exp(-(1.0 / A) * Math.pow(lag[i] / variogram.range, 2))
          break
        case 'exponential':
          X[i * 2 + 1] = 1.0 - Math.exp(-(1.0 / A) * lag[i] / variogram.range)
          break
        case 'spherical':
          X[i * 2 + 1] = 1.5 * (lag[i] / variogram.range) -
            0.5 * Math.pow(lag[i] / variogram.range, 3)
          break
        }
        Y[i] = semi[i]
    }
 
    // Least squares
    var Xt = kriging_matrix_transpose(X, n, 2)
    var Z = kriging_matrix_multiply(Xt, X, 2, n, 2)
    Z = kriging_matrix_add(Z, kriging_matrix_diag(1 / alpha, 2), 2, 2)
    var cloneZ = Z.slice(0)
    if (kriging_matrix_chol(Z, 2)) { kriging_matrix_chol2inv(Z, 2) } else {
        kriging_matrix_solve(cloneZ, 2)
        Z = cloneZ
    }
    var W = kriging_matrix_multiply(kriging_matrix_multiply(Z, Xt, 2, 2, n), Y, 2, n, 1)
 
    // Variogram parameters
    variogram.nugget = W[0]
    variogram.sill = W[1] * variogram.range + variogram.nugget
    variogram.n = x.length
 
    // Gram matrix with prior
    n = x.length
    var K = Array(n * n)
    for (i = 0; i < n; i++) {
        for (j = 0; j < i; j++) {
        K[i * n + j] = variogram.model(Math.pow(Math.pow(x[i] - x[j], 2) +
                            Math.pow(y[i] - y[j], 2), 0.5),
                       variogram.nugget,
                       variogram.range,
                       variogram.sill,
                       variogram.A)
        K[j * n + i] = K[i * n + j]
        }
        K[i * n + i] = variogram.model(0, variogram.nugget,
                       variogram.range,
                       variogram.sill,
                       variogram.A)
    }
 
    // Inverse penalized Gram matrix projected to target vector
    var C = kriging_matrix_add(K, kriging_matrix_diag(sigma2, n), n, n)
    var cloneC = C.slice(0)
    if (kriging_matrix_chol(C, n)) { kriging_matrix_chol2inv(C, n) } else {
        kriging_matrix_solve(cloneC, n)
        C = cloneC
    }
 
    // Copy unprojected inverted matrix as K
    var K = C.slice(0)
    var M = kriging_matrix_multiply(C, t, n, n, 1)
    variogram.K = K
    variogram.M = M
 
    return variogram
  }
 
  // Model prediction
  kriging.predict = function(x, y, variogram) {
    var i; var k = Array(variogram.n)
    for (i = 0; i < variogram.n; i++) {
      k[i] = variogram.model(Math.pow(Math.pow(x - variogram.x[i], 2) +
                        Math.pow(y - variogram.y[i], 2), 0.5),
                   variogram.nugget, variogram.range,
                   variogram.sill, variogram.A)
    }
    return kriging_matrix_multiply(k, variogram.M, 1, variogram.n, 1)[0]
  }
  kriging.variance = function(x, y, variogram) {
    var i; var k = Array(variogram.n)
    for (i = 0; i < variogram.n; i++) {
      k[i] = variogram.model(Math.pow(Math.pow(x - variogram.x[i], 2) +
                        Math.pow(y - variogram.y[i], 2), 0.5),
                   variogram.nugget, variogram.range,
                   variogram.sill, variogram.A)
    }
    return variogram.model(0, variogram.nugget, variogram.range,
      variogram.sill, variogram.A) +
    kriging_matrix_multiply(kriging_matrix_multiply(k, variogram.K,
      1, variogram.n, variogram.n),
    k, 1, variogram.n, 1)[0]
  }
 
  // Gridded matrices or contour paths
  kriging.grid = function(polygons, variogram, width) {
    var i; var j; var k; var n = polygons.length
    if (n == 0) return
 
    // Boundaries of polygons space
    var xlim = [polygons[0][0][0], polygons[0][0][0]]
    var ylim = [polygons[0][0][1], polygons[0][0][1]]
    for (i = 0; i < n; i++) // Polygons
        {
      for (j = 0; j < polygons[i].length; j++) { // Vertices
        if (polygons[i][j][0] < xlim[0]) { xlim[0] = polygons[i][j][0] }
        if (polygons[i][j][0] > xlim[1]) { xlim[1] = polygons[i][j][0] }
        if (polygons[i][j][1] < ylim[0]) { ylim[0] = polygons[i][j][1] }
        if (polygons[i][j][1] > ylim[1]) { ylim[1] = polygons[i][j][1] }
        }
    }
 
    // Alloc for O(n^2) space
    var xtarget, ytarget
    var a = Array(2); var b = Array(2)
    var lxlim = Array(2) // Local dimensions
    var lylim = Array(2) // Local dimensions
    var x = Math.ceil((xlim[1] - xlim[0]) / width)
    var y = Math.ceil((ylim[1] - ylim[0]) / width)
 
    var A = Array(x + 1)
    for (i = 0; i <= x; i++) A[i] = Array(y + 1)
    for (i = 0; i < n; i++) {
        // Range for polygons[i]
        lxlim[0] = polygons[i][0][0]
        lxlim[1] = lxlim[0]
        lylim[0] = polygons[i][0][1]
        lylim[1] = lylim[0]
        for (j = 1; j < polygons[i].length; j++) { // Vertices
        if (polygons[i][j][0] < lxlim[0]) { lxlim[0] = polygons[i][j][0] }
        if (polygons[i][j][0] > lxlim[1]) { lxlim[1] = polygons[i][j][0] }
        if (polygons[i][j][1] < lylim[0]) { lylim[0] = polygons[i][j][1] }
        if (polygons[i][j][1] > lylim[1]) { lylim[1] = polygons[i][j][1] }
        }
 
        // Loop through polygon subspace
        a[0] = Math.floor(((lxlim[0] - ((lxlim[0] - xlim[0]) % width)) - xlim[0]) / width)
        a[1] = Math.ceil(((lxlim[1] - ((lxlim[1] - xlim[1]) % width)) - xlim[0]) / width)
        b[0] = Math.floor(((lylim[0] - ((lylim[0] - ylim[0]) % width)) - ylim[0]) / width)
        b[1] = Math.ceil(((lylim[1] - ((lylim[1] - ylim[1]) % width)) - ylim[0]) / width)
        for (j = a[0]; j <= a[1]; j++) {
        for (k = b[0]; k <= b[1]; k++) {
            xtarget = xlim[0] + j * width
            ytarget = ylim[0] + k * width
            if (polygons[i].pip(xtarget, ytarget)) {
            A[j][k] = kriging.predict(xtarget,
                          ytarget,
                          variogram)
          }
        }
      }
    }
    A.xlim = xlim
    A.ylim = ylim
    A.zlim = [variogram.t.min(), variogram.t.max()]
    A.width = width
    return A
  }
  kriging.contour = function(value, polygons, variogram) {
 
  }
 
  // Plotting on the DOM
  kriging.plot = function(canvas, grid, xlim, ylim, colors) {
    // Clear screen
    var ctx = canvas.getContext('2d')
    ctx.clearRect(0, 0, canvas.width, canvas.height)
 
    // Starting boundaries
    var range = [xlim[1] - xlim[0], ylim[1] - ylim[0], grid.zlim[1] - grid.zlim[0]]
    var i, j, x, y, z
    var n = grid.length
    var m = grid[0].length
    var wx = Math.ceil(grid.width * canvas.width / (xlim[1] - xlim[0]))
    var wy = Math.ceil(grid.width * canvas.height / (ylim[1] - ylim[0]))
    for (i = 0; i < n; i++) {
      for (j = 0; j < m; j++) {
        if (grid[i][j] == undefined) continue
        x = canvas.width * (i * grid.width + grid.xlim[0] - xlim[0]) / range[0]
        y = canvas.height * (1 - (j * grid.width + grid.ylim[0] - ylim[0]) / range[1])
        z = (grid[i][j] - grid.zlim[0]) / range[2]
        if (z < 0.0) z = 0.0
        if (z > 1.0) z = 1.0
 
        ctx.fillStyle = colors[Math.floor((colors.length - 1) * z)]
        ctx.fillRect(Math.round(x - wx / 2), Math.round(y - wy / 2), wx, wy)
        }
    }
  }
 
  return kriging
}())
export { kriging }
// if (module && module.exports) {
//   module.exports = kriging
// }