/*
|
* Copyright 2012 ZXing authors
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#import "ZXBitSource.h"
|
#import "ZXByteArray.h"
|
#import "ZXDataMatrixDecodedBitStreamParser.h"
|
#import "ZXDecoderResult.h"
|
#import "ZXErrors.h"
|
|
/**
|
* See ISO 16022:2006, Annex C Table C.1
|
* The C40 Basic Character Set (*'s used for placeholders for the shift values)
|
*/
|
const unichar C40_BASIC_SET_CHARS[40] = {
|
'*', '*', '*', ' ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
|
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
|
};
|
|
const unichar C40_SHIFT2_SET_CHARS[40] = {
|
'!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.',
|
'/', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_'
|
};
|
|
/**
|
* See ISO 16022:2006, Annex C Table C.2
|
* The Text Basic Character Set (*'s used for placeholders for the shift values)
|
*/
|
const unichar TEXT_BASIC_SET_CHARS[40] = {
|
'*', '*', '*', ' ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
|
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'
|
};
|
|
// Shift 2 for Text is the same encoding as C40
|
static unichar TEXT_SHIFT2_SET_CHARS[40];
|
|
const unichar TEXT_SHIFT3_SET_CHARS[32] = {
|
'`', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
|
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '{', '|', '}', '~', (unichar) 127
|
};
|
|
enum {
|
PAD_ENCODE = 0, // Not really a mode
|
ASCII_ENCODE,
|
C40_ENCODE,
|
TEXT_ENCODE,
|
ANSIX12_ENCODE,
|
EDIFACT_ENCODE,
|
BASE256_ENCODE
|
};
|
|
@implementation ZXDataMatrixDecodedBitStreamParser
|
|
+ (void)initialize {
|
if ([self class] != [ZXDataMatrixDecodedBitStreamParser class]) return;
|
|
memcpy(TEXT_SHIFT2_SET_CHARS, C40_SHIFT2_SET_CHARS, sizeof(C40_SHIFT2_SET_CHARS));
|
}
|
|
+ (ZXDecoderResult *)decode:(ZXByteArray *)bytes error:(NSError **)error {
|
ZXBitSource *bits = [[ZXBitSource alloc] initWithBytes:bytes];
|
NSMutableString *result = [NSMutableString stringWithCapacity:100];
|
NSMutableString *resultTrailer = [NSMutableString string];
|
NSMutableArray *byteSegments = [NSMutableArray arrayWithCapacity:1];
|
int mode = ASCII_ENCODE;
|
do {
|
if (mode == ASCII_ENCODE) {
|
mode = [self decodeAsciiSegment:bits result:result resultTrailer:resultTrailer];
|
if (mode == -1) {
|
if (error) *error = ZXFormatErrorInstance();
|
return nil;
|
}
|
} else {
|
switch (mode) {
|
case C40_ENCODE:
|
if (![self decodeC40Segment:bits result:result]) {
|
if (error) *error = ZXFormatErrorInstance();
|
return nil;
|
}
|
break;
|
case TEXT_ENCODE:
|
if (![self decodeTextSegment:bits result:result]) {
|
if (error) *error = ZXFormatErrorInstance();
|
return nil;
|
}
|
break;
|
case ANSIX12_ENCODE:
|
if (![self decodeAnsiX12Segment:bits result:result]) {
|
if (error) *error = ZXFormatErrorInstance();
|
return nil;
|
}
|
break;
|
case EDIFACT_ENCODE:
|
[self decodeEdifactSegment:bits result:result];
|
break;
|
case BASE256_ENCODE:
|
if (![self decodeBase256Segment:bits result:result byteSegments:byteSegments]) {
|
if (error) *error = ZXFormatErrorInstance();
|
return nil;
|
}
|
break;
|
default:
|
if (error) *error = ZXFormatErrorInstance();
|
return nil;
|
}
|
mode = ASCII_ENCODE;
|
}
|
} while (mode != PAD_ENCODE && bits.available > 0);
|
if ([resultTrailer length] > 0) {
|
[result appendString:resultTrailer];
|
}
|
return [[ZXDecoderResult alloc] initWithRawBytes:bytes
|
text:result
|
byteSegments:[byteSegments count] == 0 ? nil : byteSegments
|
ecLevel:nil];
|
}
|
|
/**
|
* See ISO 16022:2006, 5.2.3 and Annex C, Table C.2
|
*/
|
+ (int)decodeAsciiSegment:(ZXBitSource *)bits result:(NSMutableString *)result resultTrailer:(NSMutableString *)resultTrailer {
|
BOOL upperShift = NO;
|
do {
|
int oneByte = [bits readBits:8];
|
if (oneByte == 0) {
|
return -1;
|
} else if (oneByte <= 128) { // ASCII data (ASCII value + 1)
|
if (upperShift) {
|
oneByte += 128;
|
//upperShift = NO;
|
}
|
[result appendFormat:@"%C", (unichar)(oneByte - 1)];
|
return ASCII_ENCODE;
|
} else if (oneByte == 129) { // Pad
|
return PAD_ENCODE;
|
} else if (oneByte <= 229) { // 2-digit data 00-99 (Numeric Value + 130)
|
int value = oneByte - 130;
|
if (value < 10) { // pad with '0' for single digit values
|
[result appendString:@"0"];
|
}
|
[result appendFormat:@"%d", value];
|
} else if (oneByte == 230) { // Latch to C40 encodation
|
return C40_ENCODE;
|
} else if (oneByte == 231) { // Latch to Base 256 encodation
|
return BASE256_ENCODE;
|
} else if (oneByte == 232) {
|
// FNC1
|
[result appendFormat:@"%C", (unichar)29]; // translate as ASCII 29
|
} else if (oneByte == 233 || oneByte == 234) {
|
// Structured Append, Reader Programming
|
// Ignore these symbols for now
|
//return -1;
|
} else if (oneByte == 235) { // Upper Shift (shift to Extended ASCII)
|
upperShift = YES;
|
} else if (oneByte == 236) { // 05 Macro
|
[result appendFormat:@"[)>%C%C", (unichar)0x001E05, (unichar)0x001D];
|
[resultTrailer insertString:[NSString stringWithFormat:@"%C%C", (unichar)0x001E, (unichar)0x0004] atIndex:0];
|
} else if (oneByte == 237) { // 06 Macro
|
[result appendFormat:@"[)>%C%C", (unichar)0x001E06, (unichar)0x001D];
|
[resultTrailer insertString:[NSString stringWithFormat:@"%C%C", (unichar)0x001E, (unichar)0x0004] atIndex:0];
|
} else if (oneByte == 238) { // Latch to ANSI X12 encodation
|
return ANSIX12_ENCODE;
|
} else if (oneByte == 239) { // Latch to Text encodation
|
return TEXT_ENCODE;
|
} else if (oneByte == 240) { // Latch to EDIFACT encodation
|
return EDIFACT_ENCODE;
|
} else if (oneByte == 241) { // ECI Character
|
// TODO(bbrown): I think we need to support ECI
|
// Ignore this symbol for now
|
} else if (oneByte >= 242) { // Not to be used in ASCII encodation
|
// ... but work around encoders that end with 254, latch back to ASCII
|
if (oneByte != 254 || bits.available != 0) {
|
return -1;
|
}
|
}
|
} while (bits.available > 0);
|
return ASCII_ENCODE;
|
}
|
|
/**
|
* See ISO 16022:2006, 5.2.5 and Annex C, Table C.1
|
*/
|
+ (BOOL)decodeC40Segment:(ZXBitSource *)bits result:(NSMutableString *)result {
|
// Three C40 values are encoded in a 16-bit value as
|
// (1600 * C1) + (40 * C2) + C3 + 1
|
// TODO(bbrown): The Upper Shift with C40 doesn't work in the 4 value scenario all the time
|
BOOL upperShift = NO;
|
|
int cValues[3] = {0};
|
int shift = 0;
|
|
do {
|
// If there is only one byte left then it will be encoded as ASCII
|
if ([bits available] == 8) {
|
return YES;
|
}
|
int firstByte = [bits readBits:8];
|
if (firstByte == 254) { // Unlatch codeword
|
return YES;
|
}
|
|
[self parseTwoBytes:firstByte secondByte:[bits readBits:8] result:cValues];
|
|
for (int i = 0; i < 3; i++) {
|
int cValue = cValues[i];
|
switch (shift) {
|
case 0:
|
if (cValue < 3) {
|
shift = cValue + 1;
|
} else if (cValue < sizeof(C40_BASIC_SET_CHARS) / sizeof(char)) {
|
unichar c40char = C40_BASIC_SET_CHARS[cValue];
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(c40char + 128)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", c40char];
|
}
|
} else {
|
return NO;
|
}
|
break;
|
case 1:
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(cValue + 128)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", (unichar)cValue];
|
}
|
shift = 0;
|
break;
|
case 2:
|
if (cValue < sizeof(C40_SHIFT2_SET_CHARS) / sizeof(char)) {
|
unichar c40char = C40_SHIFT2_SET_CHARS[cValue];
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(c40char + 128)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", c40char];
|
}
|
} else if (cValue == 27) { // FNC1
|
[result appendFormat:@"%C", (unichar)29]; // translate as ASCII 29
|
} else if (cValue == 30) { // Upper Shift
|
upperShift = YES;
|
} else {
|
return NO;
|
}
|
shift = 0;
|
break;
|
case 3:
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(cValue + 224)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", (unichar)(cValue + 96)];
|
}
|
shift = 0;
|
break;
|
default:
|
return NO;
|
}
|
}
|
} while (bits.available > 0);
|
|
return YES;
|
}
|
|
/**
|
* See ISO 16022:2006, 5.2.6 and Annex C, Table C.2
|
*/
|
+ (BOOL)decodeTextSegment:(ZXBitSource *)bits result:(NSMutableString *)result {
|
// Three Text values are encoded in a 16-bit value as
|
// (1600 * C1) + (40 * C2) + C3 + 1
|
// TODO(bbrown): The Upper Shift with Text doesn't work in the 4 value scenario all the time
|
BOOL upperShift = NO;
|
|
int cValues[3] = {0};
|
|
int shift = 0;
|
do {
|
// If there is only one byte left then it will be encoded as ASCII
|
if (bits.available == 8) {
|
return YES;
|
}
|
int firstByte = [bits readBits:8];
|
if (firstByte == 254) { // Unlatch codeword
|
return YES;
|
}
|
|
[self parseTwoBytes:firstByte secondByte:[bits readBits:8] result:cValues];
|
|
for (int i = 0; i < 3; i++) {
|
int cValue = cValues[i];
|
switch (shift) {
|
case 0:
|
if (cValue < 3) {
|
shift = cValue + 1;
|
} else if (cValue < sizeof(TEXT_BASIC_SET_CHARS) / sizeof(char)) {
|
unichar textChar = TEXT_BASIC_SET_CHARS[cValue];
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(textChar + 128)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", textChar];
|
}
|
} else {
|
return NO;
|
}
|
break;
|
case 1:
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(cValue + 128)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", (unichar)cValue];
|
}
|
shift = 0;
|
break;
|
case 2:
|
// Shift 2 for Text is the same encoding as C40
|
if (cValue < sizeof(TEXT_SHIFT2_SET_CHARS) / sizeof(unichar)) {
|
unichar textChar = TEXT_SHIFT2_SET_CHARS[cValue];
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(textChar + 128)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", textChar];
|
}
|
} else if (cValue == 27) {
|
[result appendFormat:@"%C", (unichar)29]; // translate as ASCII 29
|
} else if (cValue == 30) { // Upper Shift
|
upperShift = YES;
|
} else {
|
return NO;
|
}
|
shift = 0;
|
break;
|
case 3:
|
if (cValue < sizeof(TEXT_SHIFT3_SET_CHARS) / sizeof(char)) {
|
unichar textChar = TEXT_SHIFT3_SET_CHARS[cValue];
|
if (upperShift) {
|
[result appendFormat:@"%C", (unichar)(textChar + 128)];
|
upperShift = NO;
|
} else {
|
[result appendFormat:@"%C", textChar];
|
}
|
shift = 0;
|
} else {
|
return NO;
|
}
|
break;
|
default:
|
return NO;
|
}
|
}
|
} while (bits.available > 0);
|
return YES;
|
}
|
|
/**
|
* See ISO 16022:2006, 5.2.7
|
*/
|
+ (BOOL)decodeAnsiX12Segment:(ZXBitSource *)bits result:(NSMutableString *)result {
|
// Three ANSI X12 values are encoded in a 16-bit value as
|
// (1600 * C1) + (40 * C2) + C3 + 1
|
|
int cValues[3] = {0};
|
do {
|
// If there is only one byte left then it will be encoded as ASCII
|
if (bits.available == 8) {
|
return YES;
|
}
|
int firstByte = [bits readBits:8];
|
if (firstByte == 254) { // Unlatch codeword
|
return YES;
|
}
|
|
[self parseTwoBytes:firstByte secondByte:[bits readBits:8] result:cValues];
|
|
for (int i = 0; i < 3; i++) {
|
int cValue = cValues[i];
|
if (cValue == 0) { // X12 segment terminator <CR>
|
[result appendString:@"\r"];
|
} else if (cValue == 1) { // X12 segment separator *
|
[result appendString:@"*"];
|
} else if (cValue == 2) { // X12 sub-element separator >
|
[result appendString:@">"];
|
} else if (cValue == 3) { // space
|
[result appendString:@" "];
|
} else if (cValue < 14) { // 0 - 9
|
[result appendFormat:@"%C", (unichar)(cValue + 44)];
|
} else if (cValue < 40) { // A - Z
|
[result appendFormat:@"%C", (unichar)(cValue + 51)];
|
} else {
|
return NO;
|
}
|
}
|
} while (bits.available > 0);
|
return YES;
|
}
|
|
+ (void)parseTwoBytes:(int)firstByte secondByte:(int)secondByte result:(int[])result {
|
int fullBitValue = (firstByte << 8) + secondByte - 1;
|
int temp = fullBitValue / 1600;
|
result[0] = temp;
|
fullBitValue -= temp * 1600;
|
temp = fullBitValue / 40;
|
result[1] = temp;
|
result[2] = fullBitValue - temp * 40;
|
}
|
|
/**
|
* See ISO 16022:2006, 5.2.8 and Annex C Table C.3
|
*/
|
+ (void)decodeEdifactSegment:(ZXBitSource *)bits result:(NSMutableString *)result {
|
do {
|
// If there is only two or less bytes left then it will be encoded as ASCII
|
if (bits.available <= 16) {
|
return;
|
}
|
|
for (int i = 0; i < 4; i++) {
|
int edifactValue = [bits readBits:6];
|
|
// Check for the unlatch character
|
if (edifactValue == 0x1F) { // 011111
|
// Read rest of byte, which should be 0, and stop
|
int bitsLeft = 8 - bits.bitOffset;
|
if (bitsLeft != 8) {
|
[bits readBits:bitsLeft];
|
}
|
return;
|
}
|
|
if ((edifactValue & 0x20) == 0) { // no 1 in the leading (6th) bit
|
edifactValue |= 0x40; // Add a leading 01 to the 6 bit binary value
|
}
|
[result appendFormat:@"%c", (char)edifactValue];
|
}
|
} while (bits.available > 0);
|
}
|
|
/**
|
* See ISO 16022:2006, 5.2.9 and Annex B, B.2
|
*/
|
+ (BOOL)decodeBase256Segment:(ZXBitSource *)bits result:(NSMutableString *)result byteSegments:(NSMutableArray *)byteSegments {
|
int codewordPosition = 1 + bits.byteOffset; // position is 1-indexed
|
int d1 = [self unrandomize255State:[bits readBits:8] base256CodewordPosition:codewordPosition++];
|
int count;
|
if (d1 == 0) {
|
count = [bits available] / 8;
|
} else if (d1 < 250) {
|
count = d1;
|
} else {
|
count = 250 * (d1 - 249) + [self unrandomize255State:[bits readBits:8] base256CodewordPosition:codewordPosition++];
|
}
|
|
if (count < 0) {
|
return NO;
|
}
|
|
ZXByteArray *bytes = [[ZXByteArray alloc] initWithLength:count];
|
for (int i = 0; i < count; i++) {
|
if ([bits available] < 8) {
|
return NO;
|
}
|
bytes.array[i] = (int8_t)[self unrandomize255State:[bits readBits:8] base256CodewordPosition:codewordPosition++];
|
}
|
[byteSegments addObject:bytes];
|
|
[result appendString:[[NSString alloc] initWithBytes:bytes.array length:bytes.length encoding:NSISOLatin1StringEncoding]];
|
return YES;
|
}
|
|
/**
|
* See ISO 16022:2006, Annex B, B.2
|
*/
|
+ (int)unrandomize255State:(int)randomizedBase256Codeword base256CodewordPosition:(int)base256CodewordPosition {
|
int pseudoRandomNumber = ((149 * base256CodewordPosition) % 255) + 1;
|
int tempVariable = randomizedBase256Codeword - pseudoRandomNumber;
|
return tempVariable >= 0 ? tempVariable : tempVariable + 256;
|
}
|
|
@end
|