jinpengyong
2023-11-01 77fb7786036fd4c7dd16b9b15c6569cdf2d8ba19
screen-api/src/main/java/com/moral/api/service/impl/ProfessionServiceImpl.java
@@ -6,14 +6,7 @@
import org.springframework.util.ObjectUtils;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.*;
import java.util.stream.Collectors;
import com.alibaba.fastjson.JSONObject;
@@ -86,7 +79,7 @@
    @Autowired
    private SensorService sensorService;
    private static Map<String, String> senorMap = new HashMap<>();
    private static final Map<String, String> senorMap = new HashMap<>();
    static {
        senorMap.put(Constants.SENSOR_CODE_PM25, "PM2_5");
@@ -103,8 +96,10 @@
        List<Map<String, Object>> devices = deviceService.getDevicesByOrganizationId(organizationId);
        Set<Map<String, Object>> result = new HashSet<>();
        for (Map<String, Object> device : devices) {
            List<Map<String, Object>> professions = (List<Map<String, Object>>) device.get("professions");
            result.addAll(professions);
            if(Objects.nonNull(device)&&Objects.nonNull(device.get("professions"))&&device.containsKey("professions")){
                List<Map<String, Object>> professions = (List<Map<String, Object>>) device.get("professions");
                result.addAll(professions);
            }
        }
        return result;
    }
@@ -149,13 +144,13 @@
    }
    @Override
    public List<Map<String, Object>> professionContribution(Map<String, Object> params) {
    public Map<String, Object> professionContribution(Map<String, Object> params) {
        int orgId = Integer.parseInt(params.get("organizationId").toString());
        List<String> professions = Arrays.asList(params.get("professions").toString().split(","));
        String type = params.get("type").toString();
        String time = params.get("time").toString();
        String sensorCode = params.get("sensorCode").toString();
        List<Map<String, Object>> result = new ArrayList<>();
        Map<String, Object> result = new HashMap<>();
        switch (type) {
            case "year":
@@ -174,8 +169,13 @@
    }
    //贡献率,年
    private List<Map<String, Object>> professionContributionOfYear(Integer orgId, List<String> professions, String time, String sensorCode) {
        List<Map<String, Object>> result = new ArrayList<>();
    private Map<String, Object> professionContributionOfYear(Integer orgId, List<String> professions, String time, String sensorCode) {
        Map<String, Object> result = new HashMap<>();
        //1.时间信息结果
        List<String> timeLag = DateUtils.getTimeLag(time);
        result.put("time", timeLag);
        //根据组织获取区域定位
        QueryWrapper<Organization> organizationQueryWrapper = new QueryWrapper<>();
@@ -183,10 +183,6 @@
                .eq("id", orgId);
        Integer locationLevelCode = organizationService.getOne(organizationQueryWrapper).getLocationLevelCode();
        //该组织所有设备信息
        List<String> allMacs = deviceService.getMacsByOrganizationId(orgId);
        List<String> timeLag = DateUtils.getTimeLag(time);
        //本市本年所有月数据
        QueryWrapper<CityAqiMonthly> cityAqiMonthlyQueryWrapper = new QueryWrapper<>();
@@ -202,25 +198,26 @@
        }
        //所有设备本年所有月数据
        //该组织所有设备信息,本年所有月数据
        List<String> allMacs = deviceService.getMacsByOrganizationId(orgId);
        List<HistoryMonthly> allDeviceData = historyMonthlyService.getValueByMacs(allMacs, time);
        //按time分组
        Map<String, List<HistoryMonthly>> allDeviceDataMap = allDeviceData.stream()
                .collect(Collectors.groupingBy(o -> DateUtils.dateToDateString(o.getTime()).substring(0, 7)));
        //本市数据结果集
        Map<String, Object> resultCityDataMap = new HashMap<>();
        List<Map<String, Object>> cityDataList = new ArrayList<>();
        //所有设备每个时间点,和值
        Map<String, Object> allDeviceSumMap = new HashMap<>();
        for (String yearMonth : timeLag) {
            Map<String, Object> resultMap = new HashMap<>();
            resultMap.put("time", yearMonth);
            //所有设备该因子累加值
            Double allDeviceSum = null;
            List<HistoryMonthly> historyMonthlyList = allDeviceDataMap.get(yearMonth);
            if (!ObjectUtils.isEmpty(historyMonthlyList)) {
                allDeviceSum = historyMonthlyService.calculatedValue(historyMonthlyList, sensorCode, "sum");
            }
            resultMap.put("allDeviceSum", allDeviceSum);
            allDeviceSumMap.put(yearMonth, allDeviceSum);
            //本市值
@@ -230,14 +227,26 @@
                //判断城市aqi是否有该因子数据
                String sensorName = senorMap.get(sensorCode);
                if (sensorName != null) {
                    cityValue = (Double) dataValue.get(sensorName);
                    cityValue = Double.parseDouble(dataValue.get(sensorName).toString());
                }
            }
            resultMap.put("cityValue", cityValue);
            result.add(resultMap);
            Map<String, Object> cityDataMap = new HashMap<>();
            //本市数据
            cityDataMap.put("value", cityValue);
            cityDataList.add(cityDataMap);
        }
        //2.本市数据结果
        resultCityDataMap.put("data", cityDataList);
        result.put("本市", resultCityDataMap);
        for (String profession : professions) {
            //每个行业数据结果集
            HashMap<String, Object> professionMap = new HashMap<>();
            List<Map<String, Object>> dataList = new ArrayList<>();
            //查询行业名称
            String professionName = null;
            Map<String, Object> dictData = (Map<String, Object>) redisTemplate.opsForValue().get(RedisConstants.DICT_DATA_KEY);
@@ -250,62 +259,66 @@
            }
            //获取该行业设备
            //获取该行业所有设备信息,年所有月数据
            List<Device> professionDevices = getDevicesOfProfessions(orgId, Collections.singletonList(profession));
            List<String> professionMacs = professionDevices.stream().map(Device::getMac).collect(Collectors.toList());
            //该行业设备本年所有月数据
            List<HistoryMonthly> professionDeviceData = historyMonthlyService.getValueByMacs(professionMacs, time);
            //按time分组
            Map<String, List<HistoryMonthly>> professionDataMap = professionDeviceData.stream()
                    .collect(Collectors.groupingBy(o -> DateUtils.dateToDateString(o.getTime()).substring(0, 7)));
            for (Map<String, Object> map : result) {
                Object allDeviceSum = map.get("allDeviceSum");
                String resultTime = map.get("time").toString();
                List<HistoryMonthly> historyMonthlyList = professionDataMap.get(resultTime);
            for (String resultTime : timeLag) {
                //每个时间点数据
                Map<String, Object> timeDataMap = new HashMap<>();
                Object o = allDeviceSumMap.get(resultTime);
                Double allDeviceSum = null;
                if (o != null) {
                    allDeviceSum = Double.parseDouble(o.toString());
                }
                List<HistoryMonthly> professionDeviceHistoryMonthlyList = professionDataMap.get(resultTime);
                //贡献率
                String contributionRate = null;
                Double professionAvg = null;
                if (!ObjectUtils.isEmpty(historyMonthlyList)) {
                if (!ObjectUtils.isEmpty(professionDeviceHistoryMonthlyList)) {
                    //该行业均值计算
                    professionAvg = historyMonthlyService.calculatedValue(historyMonthlyList, sensorCode, "avg");
                    professionAvg = historyMonthlyService.calculatedValue(professionDeviceHistoryMonthlyList, sensorCode, "avg");
                    //该行业累加值计算
                    Double professionSum = historyMonthlyService.calculatedValue(historyMonthlyList, sensorCode, "sum");
                    Double professionSum = historyMonthlyService.calculatedValue(professionDeviceHistoryMonthlyList, sensorCode, "sum");
                    //行业贡献率计算
                    NumberFormat numberFormat = NumberFormat.getInstance();
                    numberFormat.setMaximumFractionDigits(2);
                    if (allDeviceSum != null) {
                        contributionRate = numberFormat.format(professionSum / ((Double) allDeviceSum) * 100) + "%";
                    if (allDeviceSum != null && allDeviceSum != 0d) {
                        contributionRate = numberFormat.format(professionSum / (allDeviceSum) * 100) + "%";
                    }
                }
                Map<String, Object> professionMap = new HashMap<>();
                professionMap.put("contributionRate", contributionRate);
                professionMap.put("value", professionAvg == null ? null : AmendUtils.sciCal(professionAvg, 0));
                map.put(professionName, professionMap);
                //行业均值
                timeDataMap.put("value", professionAvg == null ? null : AmendUtils.sciCal(professionAvg, 0));
                //贡献率
                timeDataMap.put("name", contributionRate);
                dataList.add(timeDataMap);
            }
            professionMap.put("data", dataList);
            result.put(professionName, professionMap);
        }
        result.forEach(map -> map.remove("allDeviceSum"));
        return result;
    }
    //贡献率,月
    private List<Map<String, Object>> professionContributionOfMonth(Integer orgId, List<String> professions, String time, String sensorCode) {
        List<Map<String, Object>> result = new ArrayList<>();
    private Map<String, Object> professionContributionOfMonth(Integer orgId, List<String> professions, String time, String sensorCode) {
        Map<String, Object> result = new HashMap<>();
        //1.时间信息结果
        List<String> timeLag = DateUtils.getTimeLag(time);
        result.put("time", timeLag);
        //根据组织获取区域定位
        QueryWrapper<Organization> organizationQueryWrapper = new QueryWrapper<>();
        organizationQueryWrapper.select("location_level_code")
                .eq("id", orgId);
        Integer locationLevelCode = organizationService.getOne(organizationQueryWrapper).getLocationLevelCode();
        //该组织所有设备信息
        List<String> allMacs = deviceService.getMacsByOrganizationId(orgId);
        //日时间点
        List<String> timeLag = DateUtils.getTimeLag(time);
        //本市本月所有日数据
@@ -322,24 +335,26 @@
        }
        //所有设备本月所有日数据
        //该组织所有设备信息,本月所有日数据
        List<String> allMacs = deviceService.getMacsByOrganizationId(orgId);
        List<HistoryDaily> allDeviceData = historyDailyService.getValueByMacs(allMacs, time);
        //按time分组
        Map<String, List<HistoryDaily>> allDeviceDataMap = allDeviceData.stream()
                .collect(Collectors.groupingBy(o -> DateUtils.dateToDateString(o.getTime()).substring(0, 10)));
        //本市数据结果集
        Map<String, Object> resultCityDataMap = new HashMap<>();
        List<Map<String, Object>> cityDataList = new ArrayList<>();
        //所有设备每个时间点,和值
        Map<String, Object> allDeviceSumMap = new HashMap<>();
        for (String yearMonthDay : timeLag) {
            Map<String, Object> resultMap = new HashMap<>();
            resultMap.put("time", yearMonthDay);
            //所有设备该因子累加值
            Double allDeviceSum = null;
            List<HistoryDaily> historyDailyList = allDeviceDataMap.get(yearMonthDay);
            if (!ObjectUtils.isEmpty(historyDailyList)) {
                allDeviceSum = historyDailyService.calculatedValue(historyDailyList, sensorCode, "sum");
            }
            resultMap.put("allDeviceSum", allDeviceSum);
            allDeviceSumMap.put(yearMonthDay, allDeviceSum);
            //本市值
@@ -349,14 +364,27 @@
                //判断城市aqi是否有该因子数据
                String sensorName = senorMap.get(sensorCode);
                if (sensorName != null) {
                    cityValue = (Double) dataValue.get(sensorName);
                    cityValue = Double.parseDouble(dataValue.get(sensorName).toString());
                }
            }
            resultMap.put("cityValue", cityValue);
            result.add(resultMap);
            Map<String, Object> cityDataMap = new HashMap<>();
            //本市数据
            cityDataMap.put("value", cityValue);
            cityDataList.add(cityDataMap);
        }
        //2.本市数据结果
        resultCityDataMap.put("data", cityDataList);
        result.put("本市", resultCityDataMap);
        for (String profession : professions) {
            //每个行业数据结果集
            HashMap<String, Object> professionMap = new HashMap<>();
            List<Map<String, Object>> dataList = new ArrayList<>();
            //查询行业名称
            String professionName = null;
            Map<String, Object> dictData = (Map<String, Object>) redisTemplate.opsForValue().get(RedisConstants.DICT_DATA_KEY);
            List<SysDictData> professionInfo = (List<SysDictData>) dictData.get("profession");
@@ -367,49 +395,60 @@
                }
            }
            //获取该行业设备
            //获取该行业所有设备信息,年所有月数据
            List<Device> professionDevices = getDevicesOfProfessions(orgId, Collections.singletonList(profession));
            List<String> professionMacs = professionDevices.stream().map(Device::getMac).collect(Collectors.toList());
            //该行业设备本月所有日数据
            List<HistoryDaily> professionDeviceData = historyDailyService.getValueByMacs(professionMacs, time);
            //按time分组
            Map<String, List<HistoryDaily>> professionDataMap = professionDeviceData.stream()
                    .collect(Collectors.groupingBy(o -> DateUtils.dateToDateString(o.getTime()).substring(0, 10)));
            for (Map<String, Object> map : result) {
                Object allDeviceSum = map.get("allDeviceSum");
                String resultTime = map.get("time").toString();
                List<HistoryDaily> historyDailyList = professionDataMap.get(resultTime);
            for (String resultTime : timeLag) {
                //每个时间点数据
                Map<String, Object> timeDataMap = new HashMap<>();
                Object o = allDeviceSumMap.get(resultTime);
                Double allDeviceSum = null;
                if (o != null) {
                    allDeviceSum = Double.parseDouble(o.toString());
                }
                List<HistoryDaily> preofessionDeviceHistoryDailyList = professionDataMap.get(resultTime);
                //贡献率
                String contributionRate = null;
                Double professionAvg = null;
                if (!ObjectUtils.isEmpty(historyDailyList)) {
                if (!ObjectUtils.isEmpty(preofessionDeviceHistoryDailyList)) {
                    //该行业均值计算
                    professionAvg = historyDailyService.calculatedValue(historyDailyList, sensorCode, "avg");
                    professionAvg = historyDailyService.calculatedValue(preofessionDeviceHistoryDailyList, sensorCode, "avg");
                    //该行业累加值计算
                    Double professionSum = historyDailyService.calculatedValue(historyDailyList, sensorCode, "sum");
                    Double professionSum = historyDailyService.calculatedValue(preofessionDeviceHistoryDailyList, sensorCode, "sum");
                    //行业贡献率计算
                    NumberFormat numberFormat = NumberFormat.getInstance();
                    numberFormat.setMaximumFractionDigits(2);
                    if (allDeviceSum != null) {
                        contributionRate = numberFormat.format(professionSum / ((Double) allDeviceSum) * 100) + "%";
                    if (allDeviceSum != null && allDeviceSum != 0d) {
                        contributionRate = numberFormat.format(professionSum / (allDeviceSum) * 100) + "%";
                    }
                }
                Map<String, Object> professionMap = new HashMap<>();
                professionMap.put("contributionRate", contributionRate);
                professionMap.put("value", professionAvg == null ? null : AmendUtils.sciCal(professionAvg, 0));
                map.put(professionName, professionMap);
                //行业均值
                timeDataMap.put("value", professionAvg == null ? null : AmendUtils.sciCal(professionAvg, 0));
                //贡献率
                timeDataMap.put("name", contributionRate);
                dataList.add(timeDataMap);
            }
            professionMap.put("data", dataList);
            result.put(professionName, professionMap);
        }
        result.forEach(map -> map.remove("allDeviceSum"));
        return result;
    }
    private List<Map<String, Object>> professionContributionOfDay(Integer orgId, List<String> professions, String time, String sensorCode) {
        List<Map<String, Object>> result = new ArrayList<>();
    private Map<String, Object> professionContributionOfDay(Integer orgId, List<String> professions, String time, String sensorCode) {
        Map<String, Object> result = new HashMap<>();
        //1.时间信息结果
        List<String> timeLag = DateUtils.getTimeLag(time);
        result.put("time", timeLag);
        //根据组织获取区域定位
        QueryWrapper<Organization> organizationQueryWrapper = new QueryWrapper<>();
@@ -421,14 +460,12 @@
        QueryWrapper<Sensor> sensorQueryWrapper = new QueryWrapper<>();
        sensorQueryWrapper.select("lower", "upper").eq("code", sensorCode);
        Sensor sensor = sensorService.getOne(sensorQueryWrapper);
        Double sensorLower = sensor.getLower();
        Double sensorUpper = sensor.getUpper();
        //该组织所有设备信息
        List<String> allMacs = deviceService.getMacsByOrganizationId(orgId);
        //小时时间点
        List<String> timeLag = DateUtils.getTimeLag(time);
        Double sensorLower = null;
        Double sensorUpper = null;
        if (sensor != null) {
            sensorLower = sensor.getLower();
            sensorUpper = sensor.getUpper();
        }
        //本市本日所有小时数据
@@ -445,25 +482,26 @@
        }
        //所有设备本日所有小时数据
        //该组织所有设备信息,本日所有小时数据
        List<String> allMacs = deviceService.getMacsByOrganizationId(orgId);
        List<HistoryHourly> allDeviceData = historyHourlyService.getValueByMacs(allMacs, time);
        //按time分组
        Map<String, List<HistoryHourly>> allDeviceDataMap = allDeviceData.stream()
                .collect(Collectors.groupingBy(o -> DateUtils.dateToDateString(o.getTime()).substring(0, 13)));
        //本市数据结果集
        Map<String, Object> resultCityDataMap = new HashMap<>();
        List<Map<String, Object>> cityDataList = new ArrayList<>();
        //所有设备每个时间点,和值
        Map<String, Object> allDeviceSumMap = new HashMap<>();
        for (String yearMonthDayHour : timeLag) {
            Map<String, Object> resultMap = new HashMap<>();
            resultMap.put("time", yearMonthDayHour);
            //所有设备该因子累加值
            Double allDeviceSum = null;
            List<HistoryHourly> historyHourlyList = allDeviceDataMap.get(yearMonthDayHour);
            if (!ObjectUtils.isEmpty(historyHourlyList)) {
                allDeviceSum = historyHourlyService.calculatedValue(historyHourlyList, sensorCode, "sum", sensorLower, sensorUpper);
            }
            resultMap.put("allDeviceSum", allDeviceSum);
            allDeviceSumMap.put(yearMonthDayHour, allDeviceSum);
            //本市值
@@ -473,14 +511,27 @@
                //判断城市aqi是否有该因子数据
                String sensorName = senorMap.get(sensorCode);
                if (sensorName != null) {
                    cityValue = (Double) dataValue.get(sensorName);
                    cityValue = Double.parseDouble(dataValue.get(sensorName).toString());
                }
            }
            resultMap.put("cityValue", cityValue);
            result.add(resultMap);
            Map<String, Object> cityDataMap = new HashMap<>();
            //本市数据
            cityDataMap.put("value", cityValue);
            cityDataList.add(cityDataMap);
        }
        //2.本市数据结果
        resultCityDataMap.put("data", cityDataList);
        result.put("本市", resultCityDataMap);
        for (String profession : professions) {
            //每个行业数据结果集
            HashMap<String, Object> professionMap = new HashMap<>();
            List<Map<String, Object>> dataList = new ArrayList<>();
            //查询行业名称
            String professionName = null;
            Map<String, Object> dictData = (Map<String, Object>) redisTemplate.opsForValue().get(RedisConstants.DICT_DATA_KEY);
            List<SysDictData> professionInfo = (List<SysDictData>) dictData.get("profession");
@@ -491,44 +542,50 @@
                }
            }
            //获取该行业设备
            //获取该行业所有设备信息,年所有月数据
            List<Device> professionDevices = getDevicesOfProfessions(orgId, Collections.singletonList(profession));
            List<String> professionMacs = professionDevices.stream().map(Device::getMac).collect(Collectors.toList());
            //该行业设备本日所有小时数据
            List<HistoryHourly> professionDeviceData = historyHourlyService.getValueByMacs(professionMacs, time);
            //按time分组
            Map<String, List<HistoryHourly>> professionDataMap = professionDeviceData.stream()
                    .collect(Collectors.groupingBy(o -> DateUtils.dateToDateString(o.getTime()).substring(0, 13)));
            for (Map<String, Object> map : result) {
                Object allDeviceSum = map.get("allDeviceSum");
                String resultTime = map.get("time").toString();
                List<HistoryHourly> historyHourlyList = professionDataMap.get(resultTime);
            for (String resultTime : timeLag) {
                //每个时间点数据
                Map<String, Object> timeDataMap = new HashMap<>();
                Object o = allDeviceSumMap.get(resultTime);
                Double allDeviceSum = null;
                if (o != null) {
                    allDeviceSum = Double.parseDouble(o.toString());
                }
                List<HistoryHourly> preofessionDeviceHistoryHourlyList = professionDataMap.get(resultTime);
                //贡献率
                String contributionRate = null;
                Double professionAvg = null;
                if (!ObjectUtils.isEmpty(historyHourlyList)) {
                if (!ObjectUtils.isEmpty(preofessionDeviceHistoryHourlyList)) {
                    //该行业均值计算
                    professionAvg = historyHourlyService.calculatedValue(historyHourlyList, sensorCode, "avg", sensorLower, sensorUpper);
                    professionAvg = historyHourlyService.calculatedValue(preofessionDeviceHistoryHourlyList, sensorCode, "avg", sensorLower, sensorUpper);
                    //该行业累加值计算
                    Double professionSum = historyHourlyService.calculatedValue(historyHourlyList, sensorCode, "sum", sensorLower, sensorUpper);
                    Double professionSum = historyHourlyService.calculatedValue(preofessionDeviceHistoryHourlyList, sensorCode, "sum", sensorLower, sensorUpper);
                    //行业贡献率计算
                    NumberFormat numberFormat = NumberFormat.getInstance();
                    numberFormat.setMaximumFractionDigits(2);
                    if (allDeviceSum != null) {
                        contributionRate = numberFormat.format(professionSum / ((Double) allDeviceSum) * 100) + "%";
                    if (allDeviceSum != null && allDeviceSum != 0d) {
                        contributionRate = numberFormat.format(professionSum / (allDeviceSum) * 100) + "%";
                    }
                }
                Map<String, Object> professionMap = new HashMap<>();
                professionMap.put("contributionRate", contributionRate);
                professionMap.put("value", professionAvg == null ? null : AmendUtils.sciCal(professionAvg, 0));
                map.put(professionName, professionMap);
                //行业均值
                timeDataMap.put("value", professionAvg == null ? null : AmendUtils.sciCal(professionAvg, 0));
                //贡献率
                timeDataMap.put("name", contributionRate);
                dataList.add(timeDataMap);
            }
            professionMap.put("data", dataList);
            result.put(professionName, professionMap);
        }
        result.forEach(map -> map.remove("allDeviceSum"));
        return result;
    }
}